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Abstract
An unexpected formation of carbamothioates by a sodium hydride-mediated reaction of arylmethyl isocyanides with xanthate esters
in DMF is reported. The products thus obtained were compared with the carbamothioates obtained by the sodium hydride-medi-
ated condensation of the corresponding benzylamines and xanthate esters in DMF. To account for these unexpected reactions, a
mechanism is proposed in which the key steps are supported by quantum chemical calculations.
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Introduction
Carbamothioates (thiocarbamates) have been reported to have
antimicrobial [1], antifungal (e.g., tolnaftate and tolciclate) [2],
antimycobacterial [3], human leucocyte elastase inhibitory [4],

TRPV1 antagonistic [5], and PPARα1γ dual antagonistic [6]
properties, and also act as intermediates in the syntheses of
HIV-1 integrase ligands [7], insecticides (cartap) [8], and herbi-
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Scheme 1: Synthesis of carbamothioates from xanthate esters and
benzyl isocyanides.

cides [9]. They are also used as key intermediates in the genera-
tion of carbonyl sulfide/hydrogen sulfide [10], the synthesis of
isothiocyanates [11], asymmetric thioureas [12], and thiazoli-
dine/thiaoxazine [13]. Therefore, as a result, numerous synthe-
tic methods for carbamothioates have been reported. These
include reactions of chlorothioformates with amines [14], thio-
carbonyl benzotriazoles with alcohols [15], copper-catalyzed
reactions of α-substituted stannanes with carbamothioates [16],
reactions of isothiocyanates with alcohols [6,17], and reactions
of xanthate esters with amines [18]. Furthermore, many
methods have also been reported for the synthesis of cyclic
thiocarbamates, and these include reactions of isothiocyanates
with aldehydes in the presence of organocatalysts [19,20], reac-
tions of vicinal diols with potassium thiocyanate [21], iron
nanoparticle-catalyzed reactions of 2-naphthol with benzalde-
hyde and some of its derivatives with thiourea [22], isothio-
cyanato oxindoles with ketones [23], ammonium isothio-
cyanates with chalcones [24], and α-isothiocyanato esters with
α-keto amides [25]. Among the synthetic methods available for
the synthesis of open-chain thiocarbamates, however, many
suffer from limitations, such as the use of less stable and sensi-
tive reactants, for example, chlorothioformates [6,14,16,17],
toxic stannates [16], and isothiocyanates. In a single patent
disclosure, thiocarbamates were reported to have been synthe-
sized from xanthate esters, but the methodology described is
limited to only a few examples with aliphatic substituents and
furthermore suffers from a tedious isolation protocol [18].

As a part of our work on the development of new synthetic
methods [26-30], we have recently reported the synthesis of
thiazoles from xanthate esters [31]. In continuation of this
ongoing work, we planned to synthesize 5-alkoxy-4-arylthia-
zoles 3 by the sodium hydride/DMF-mediated reaction of aryl-
methyl isocyanides 2 with S-alkyl xanthate esters 1 or O-aryl/O-
alkyl dithiocarbonates. Unexpectedly, however, carbamo-
thioates 4a–l were instead obtained in 76–88% yield
(Scheme 1). Herein, we report on this intriguing finding and
show several examples, including a single crystal X-ray struc-

ture of one of the products so obtained. A plausible mechanism
to explain the reaction using density functional theory (DFT)
analysis is also presented in this article.

Results and Discussion
Synthesis
At the onset of our study, the reaction between O-benzyl
S-methyl dithiocarbonate (1a) and benzyl isocyanide was con-
ducted in the presence of sodium hydride in DMF. The product,
obtained in 85% yield after 10 min (Table 1, method A, entry
1), was unexpectedly found to be O-benzyl benzylcarbamo-
thioate (4a). The spectral data indicated that the product existed
in cis- and trans-geometrical isomeric forms (rotamers) because
of free rotation along the thioamide bond. When the same reac-
tion was conducted in other solvents, such as THF, acetonitrile,
dioxane, DMSO, or toluene, in the presence of sodium hydride,
none of these reactions afforded the product 4a in a satisfactory
yield (Table 1, method A, entries 2–6). Replacement of sodium
hydride by DBU did not furnish any product at all (Table 1,
method A, entry 7), and a 50% reduction in the quantity of sodi-
um hydride did not affect the yield (Table 1, method A, entry
8). Notably, however, the use of only a catalytic amount of so-
dium hydride also failed to afford any product.

Using the optimized reaction conditions that were established
for 4a, the reactions of 1a with 4-methylbenzyl isocyanide (2b)
and 4-fluorobenzyl isocyanide (2c) gave the corresponding
products 4b and 4c in 84% and 87% yield, respectively
(Figure 1). S-Methyl O-(2-methylbenzyl) dithiocarbonate (1b)
reacted with benzyl isocyanide (2a) to give O-(2-methylbenzyl)
benzylcarbamothioate (4d) in 81% yield. O-(3-Methoxybenzyl)
S-methyl dithiocarbonate (1c) reacted with 4-fluorobenzyl
isocyanide (2c) or 4-chlorobenzyl isocyanide (2d) to give the
corresponding carbamothioates 4e and 4f in 83% and 79%
yield, respectively. The generality of the reaction was further
probed by reacting O-(4-bromobenzyl) S-methyl dithiocar-
bonate (1d) with benzyl isocyanide (2a) and 4-methylbenzyl
isocyanide (2b), which afforded the corresponding carbamo-
thioates 4g and 4h in 80% and 76% yield, respectively. Interest-
ingly, with O-butyl S-methyl dithiocarbonate (1e), the xanthate
ester synthesized from n-butanol, the corresponding O-butyl
(4-fluorobenzyl)carbamothioate (4i) and O-butyl (4-chloro-
benzyl)carbamothioate (4j), were produced when reacted with
4-fluorobenzyl isocyanide (2c) and 4-chlorobenzyl isocyanide
(2d) in similar yields of 86% and 84%, respectively. Finally,
S-methyl O-(3-methylcyclohexyl) dithiocarbonate (1f) also
afforded the corresponding carbamothioates 4k and 4l in 82%
and 88% yields, with benzyl isocyanide (2a) and 4-fluoro-
benzyl isocyanide (2c), respectively. The use of a weaker base,
such as DBU, failed to form any product (Table 1, methods A
and B, entry 7).
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Table 1: Optimization data for the synthesis of 4a.

method Aa

entry solvent base time yield of 4a, %

1 DMF NaHa 10 min 85
2 THF NaHa 4 h 45
3 CH3CN NaHa 3 h 53
4 dioxane NaHa 4 h 48
5 DMSO NaHa 2 h 58
6 toluene NaHa 24 h 10
7 DMF DBU 10 h 0
8 DMF NaHc 15 min 83
9 DMF NaHd 24 h 0

method Bb

entry solvent base time yield of 4a, %

1 DMF NaH 1 h 80
2 THF NaH 6 h 35
3 CH3CN NaH 6 h 55
4 DMSO NaH 3 h 58
5 toluene NaH 12 h 29
6 DMF NaHc 1 h 74
7 DMF DBU 24 h 0

aReaction conditions: O-benzyl S-methyl dithiocarbonate (1a, 1.0 mmol), benzyl isocyanide (2a, 1.0 mmol), NaH (2.0 mmol), DMF (2.0 mL),
35–45 °C. bReaction conditions: 1a (1.0 mmol), 5a (1.0 mmol), NaH (2.0 mmol), DMF (2.0 mL), 30–40 °C. cNaH (1.0 mmol) was used. dA catalytic
amount of 5 mol % NaH was used.

For the purpose of comparison, the condensation reaction of
O-benzyl S-methyl dithiocarbonate (1a) with benzylamine 5a in
the presence of sodium hydride as the base of choice was evalu-
ated using different solvents, DMF, THF, acetonitrile, DMSO,
and toluene (Table 1, method B, entries 1–5). DMF was found
to be the best solvent, yielding O-benzyl benzylcarbamothioate
(4a) in 80% yield after 1 h (Table 1, method B, entry 1). A de-
creased amount of base reduced the yield slightly (Table 1,
method B, entry 6). The versatility of the synthetic methodolo-
gy was further investigated by reacting O-benzyl S-methyl
dithiocarbonate (1a) with 4-methylbenzylamine (5b) and
4-fluorobenzylamine (5c), which respectively yielded O-benzyl
(4-methylbenzyl)carbamothioate (4b) and O-benzyl (4-fluoro-
benzyl)carbamothioate (4c) in 82% and 77% yield (Figure 1).

S-Methyl O-(2-methylbenzyl) dithiocarbonate (1b) reacted
smoothly with benzylamine (5a) to give O-(2-methylbenzyl)

benzylcarbamothioate (4d) in 81% yield. The xanthate ester
O-(3-methoxybenzyl) S-methyl carbonodithioate (1c) under-
went condensation with 4-fluorobenzylamine (5c) and 4-chloro-
benzylamine (5d) to afford the corresponding O-(3-methoxy-
benzyl) (4-fluorobenzyl)carbamothioate and O-(3-methoxy-
benzyl) (4-chlorobenzyl)carbamothioate 4e and 4f in 75% and
83% yield, respectively. The xanthate ester O-(4-bromobenzyl)
S-methyl dithiocarbonate (1d) also reacted successfully with
benzylamine (5a) and 4-methylbenzylamine (5b) to furnish the
corresponding carbamothioates 4g and 4h in 82% and 86%
yield, respectively. O-Butyl S-methyl dithiocarbonate (1e), the
xanthate ester derived from the aliphatic alcohol n-butanol, also
gave the corresponding O-butyl (4-fluorobenzyl)carbamo-
thioate and O-butyl (4-chlorobenzyl)carbamothioate 4i and 4j in
74% and 79% yield, respectively, from the reactions with
4-fluorobenzylamine (5c) and 4-chlorobenzylamine (5d).
Finally, the cycloalkyl xanthate ester S-methyl O-(3-methyl-
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Figure 1: Substrate scope for the synthesis of carbamothioates. Reaction conditions for methods A and B: sodium hydride (2.0 mmol), 1a–f (1.0
mmol), 2 or 5 (1.0 mmol), DMF (2.0 mL). aIsolated yield from method A. bIsolated yield from method B.

cyclohexyl) carbonodithioate (1f) also underwent a condensa-
tion with benzylamine (5a) and 4-fluorobenzylamine (5c) to
give carbamothioates 4k and 4l in 81 and 71% yield, respective-
ly. The NMR spectra of the carbamothioate products obtained
indicated that, apart from 4e and 4f, all existed as rotamers and
that the ratios of rotamers, where present, were the same
whether derived from either method A or B. Alajarin et al. [32]
noted a similar doubling of 1H and 13C NMR signals due to
rotamers in one of their O-benzyl N-thiocarbamates. The struc-
ture of one of the carbamothioates, 4c, was confirmed by a
single crystal X-ray diffraction study (Figure 2 as well as
Tables S1 and S2, Supporting Information File 1, CCDC refer-
ence number: 1831389) [33]. A DFT modeling study was then
conducted at the B3LYP/6-311++G(d,p) level of theory, with
solvent corrections for chloroform, for two rotamers, namely
4cA and 4cB (generically represented as 4A and 4B in

Figure 3). These structures were generated based on the X-ray
structure of 4c and afforded a computed Gibbs free energy
difference of −1.769 kJ mol−1 in favor of 4cB. The resulting
calculated equilibrium constant of 2.042, corresponding to a
67.1/32.9 ratio of the rotamers (4cB/4cA), was in good agree-
ment with the experimentally by 1H NMR (CDCl3) observed
ratio of 65/35. Significantly, the single crystal of 4c, which
afforded the crystal structure shown in Figure 3, corresponds to
rotamer 4cB. A limited variable-temperature 1H NMR study
was conducted by heating a solution of 4c in DMSO-d6 from
ambient temperature up to 60 °C, but no changes were ob-
served in the ratio of the rotamers.

We initially hypothesized that the isocyanides could have
undergone a reductive cleavage to give the corresponding
benzylamines, which might have reacted with 1 to give 4. A
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Figure 3: Rotamers of thionocarbamates 4 (top) and computer-minimized structures of 4c (bottom).

Figure 2: ORTEP diagram of O-benzyl (4-fluorobenzyl)carbamo-
thioate (4c).

control experiment was therefore conducted with only the
isocyanide under standard reaction conditions. Only unchanged
isocyanide was found under these conditions, thus ruling out
this initial hypothesis.

Computational studies on the proposed
reaction mechanism
Several possible reaction mechanisms were considered to
account for the unexpected products obtained. Ultimately, we
employed quantum chemical calculations to shed light on the

most probable reaction pathway for the observed products, as
shown in Scheme 2. For simplicity, the reaction of benzyl
isocyanide (2a) with O-benzyl S-methyl dithiocarbonate (1a)
was chosen for the calculations, forming the intermediates
Int1–3 via the most probable transition states TS1–3, respec-
tively, which, after hydrolysis, formed the observed product 4a.
To simplify the quantum chemical calculations, the reactions
shown in Scheme 2 involve a hydride as the nucleophile or base
[34], although it is possible that dimethylamide, formed from
the reaction of sodium hydride with DMF [35], could be the
initiating nucleophile/base. All computations were carried out
with Gaussian 09 [36]. The HF/6-31G(d) level of theory in the
gas phase was only used to locate the transition state geome-
tries. An intrinsic reaction coordinate (IRC) analysis was con-
ducted for each transition state studied in this work to confirm
that the transition states were associated with the respective
minima. The final IRC structures were further optimized
(Figure S14, Supporting Information File 1). The geometries of
all reactants, transition states, and intermediates were then fully
optimized at the B3LYP/6-311++G(d,p) level of theory in the
DMF solvent phase using the polarized continuum model
(PCM). Vibrational frequencies for all of the optimized struc-
tures were calculated to ensure the presence of a single imagi-
nary frequency for each transition state, and the absence of
imaginary frequencies for reactants, intermediates, and prod-
ucts and also to obtain thermal corrections for energies at
298.15 K. The optimized geometries of reactants, transition
states, intermediates, and the product of the proposed reaction
mechanism are shown in Figure 4. The relative energies are
shown in Figure 5 and are summarized in Table S3, Supporting
Information File 1. However, it should be noted that quantum
chemical calculations for the hydrolysis steps subsequent to the
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Scheme 2: Proposed general reaction mechanism for the formation of carbamothioates (e.g., 4a) from xanthate esters (e.g., 1a) and benzyl
isocyanides (e.g., 2a). The counterion in all steps is presumed to be Na+ from NaH.

Figure 4: Optimized geometries of the reactants, transition states, intermediates, and products of the proposed reaction mechanism, as shown
schematically in Scheme 2, determined at the B3LYP/6-311++G(d,p) level of theory in DMF (using a PCM).
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Figure 5: Relative energies of the reactants, transition states (TS1–TS3), and intermediates (Int1–Int3) of the proposed reaction mechanism, com-
puted at the B3LYP/6-311++G(d,p) level of theory in DMF as the solvent.

formation of Int3 (i.e., steps A–C leading to the hydrolysis
products in Scheme 2) were not conducted.

The proposed mechanism (Scheme 2 and Figure 4) involves
several steps, the most significant one being the formation of
the anion Int1 by hydride addition to the terminal carbon atom
of the isocyanide group in 2a via transition state TS1. This
anion undergoes nucleophilic addition to the thiocarbonyl
moiety of the xanthate 1a to generate the intermediate Int2 via
transition state TS2. In the next step, elimination of the
thiomethyl group via transition state TS3 forms the third inter-
mediate Int3, consisting of a carbene and a thiolate anion. The
steps leading to the observed product carbamothioate 4a occur
from the final quenching hydrolysis of Int3, which occurs via
several energetically favorable steps (e.g., A–C), as has been re-
ported for other carbene hydrolyses [37-39]. As can be seen
from Figure 5, the highest activation energy barrier is
42.2 kJ/mol.

We had previously considered an alternative mechanism in
which a benzylic proton is instead removed by the base [40].
For the previous mechanism, which we have now recalculated
at the B3LYP/6-311++G(d,p) level of theory in DMF (using a
PCM, see Scheme S1 and Figures S15 and S16, Supporting
Information File 1), an activation energy barrier of 20.6 kJ/mol
was obtained for the formation of the resulting benzylic α-carb-
anion and H2. This benzylic α-carbanion could subsequently
undergo a nucleophilic addition to the thiocarbonyl group via a

transition state, which was analogous to TS2 depicted in
Scheme 2 above. However, in this step, instead of the nitrogen
anion, the carbanion was the nucleophile. Subsequently, elimi-
nation of the thiomethyl or thiolate anion, either by a stepwise
or by a concerted five-membered ring transition state, followed
by several subsequent steps could lead to the observed products.
However, the mechanism involving all of those steps required
an improbably higher overall activation energy of 173.9 kJ/mol
(Figure S16, Supporting Information File 1) for the products
observed. This alternative mechanism is therefore unlikely,
considering the mild conditions employed (35–45 °C), as com-
pared to the proposed reaction mechanism shown in Scheme 2
and Figure 4, which had an overall activation energy of only
42.2 kJ/mol (Figure 5).

Due to the subsequent dilute aqueous/DMF quenching condi-
tions, we were unable to detect the hydrolysis products by
HRMS. Furthermore, using the same reaction conditions, which
were employed to the S-methyl dithiocarbonates 1a–f, but using
S-ethyl or S-benzyl dithiocarbonates, none of the corresponding
expected reaction products were obtained. As well, reductive
quenching with aqueous NaCNBH3 failed to trap Int3 and only
afforded the same reaction products.

Conclusion
There are several reports, which have discussed interesting
reactions or reactivity of isocyanides. Among these are those
which showed that the isocyanide carbon atom can act as either
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a nucleophile or an electrophile. To account for the reactions re-
ported herein, the isocyanide carbon atom acted as an electro-
phile in the reaction with a hydride (or a dimethylamide anion
stemming from DMF). A facile general protocol was described
for the unexpected formation of carbamothioates 4a–l by the
reaction of the corresponding isocyanides 2a–d with S-methyl
xanthate esters (or S-methyl dithiocarbonates) 1a–f in the pres-
ence of sodium hydride in DMF (method A). The short reac-
tion time and simple work-up procedure were noteworthy fea-
tures of this protocol. As well, these carbamothioates 4a–l were
also synthesized by the condensation of xanthate esters 1a–f
with benzylamines 5a–d in the presence of sodium hydride in
DMF (method B) for comparison. The reaction times required
using method A were shorter than those required by method B.
In most cases, rotamers of the final products were detected in
the NMR spectra, and a representative DFT computational anal-
ysis conducted with 4c (this compound also yielded a crystal
structure) was in agreement with the ratio of the two rotamers
that were observed in the corresponding NMR spectra. A mech-
anism was proposed that could be supported by quantum chemi-
cal calculations. Of course, other alternative mechanisms that
can be envisioned include one in which the thiolate anions,
which were generated, could also either a) regenerate dimethyl-
amide anions from the surrounding DMF solvent; and/or
b) possibly add to the isocyanide carbon atom to generate a
nucleophilic nitrogen atom akin to the step that led to the analo-
gous TS1. However, the fact that catalytic amounts of NaH
were not sufficient to afford the observed product (Table 1,
method A, entry 9) and that the reactions using method A re-
quired at least an equimolar amount of NaH (Table 1, method
A, entry 8, cf. entry 1) but 2 equivalents in the other solvents
suggested that the latter scenarios (a and b) were less likely and
that the methylthiolate was perhaps countered by the sodium
cation from sodium hydride. Further work on this and other
isocyanide-mediated cyclization reactions are currently in
progress in our laboratory.
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